1 Sinx Cosx 1 Sinx Cosx
Juni 20, 2022
1 - cosx / sinx =a. -sinx / 1+cosxb. -cosx / 1-sinxc. sinx / 1-cosxd. cosx / 1+sinxe. sinx / 1 + cosx
1. 1 - cosx / sinx =a. -sinx / 1+cosxb. -cosx / 1-sinxc. sinx / 1-cosxd. cosx / 1+sinxe. sinx / 1 + cosx
Jawaban:
c. sinx/1-cos x
Penjelasan dengan langkah-langkah:
1-cos x= sin x
sin x= 1-cos x
jadi, diubah menjadi sinx/1-cos x
2. buktikan bahwa: 1. sinx/1+cosx = 1-cosx/sinx 2. sinx/1-cosx= 1-cosx/sinx
1.
sinx / 1+cosx = 1-cosx / sinx
sinx (1 - cosx) / (1 + cosx)(1 - cosx) = 1-cosx/sinx
sinx (1 - cosx) / 1 - cos²x = 1-cosx / sinx
sinx (1 - cosx) / sin²x = 1-cosx / sinx
1-cosx / sinx = 1-cosx / sinx
2.
sinx / 1 - cosx = 1 + cosx / sinx
(1 - cosx)(1 + cosx) = sinx . sinx
1 - cos²x = sin²x
sin²x = sin²x
3. 1-sinx/cosx=cosx+sinx
kim jong nam adalah kasus pembunuhan berencana.
4. 1-cosX/sinX=sinX/1+cosX
Pembuktian Trigonometri
1-cosx / sinx kali 1+cosx / 1+cosx
1-cos²x /sinx(1+cosx)
sin²x / sinx(1+cosx)
sinx / 1+cosx
(terbukti) Bukti Ruas Kanan :
sin x / (1+cos x) kalikan sekawan penyebut (1-cos x)
sin x (1-cos x) / (1-cos"x)
sin x (1-cos x) / sin"x
(1-cos x) / sin x
Terbukti
5. sinx/(1-cosx)=(1+cosx)/sinx
Verify Trigonometry Identity.
Operate left side.
sin x / (1 - cos x)
= sin x / (1 - cos x) [(1 + cos x) / (1 + cos x)] ← Rationalize.
= sin x (1 + cos x) / (1 - cos² x)
= sin x (1 + cos x) / sin² x
= (1 + cos x) / sin x
Proven.
sin x / (1 - cos x) = (1 + cos x) / sin x is true.
6. Bila sinx +cosx= 1/3 tentukan sinx. Cosx!
Sin x + cos x = 1/3
(sin x + cos x) ^2 = 1/9
sin^2x + cos^2x +2sinxcosx = 1/9
1 + 2sinxcosx = 1/9
2sinxcosx = 1/9 - 1
sinxcosx = - 4/9
7. sinX/1-cosX + 1-cosX/sinX = .....
Jawab:
Penjelasan dengan langkah-langkah:
sin x/(1 - cos x) + (1 - cos x)/sin x
= (sin² x + (1 - cos x)²)/(sin x . (1 - cos x))
= (sin² x + 1 - 2 cos x + cos x²) / (sin x . (1 - cos x))
= (sin² x + cos² x + 1 - 2 cos x) / (sin x . (1 - cos x))
= (1 + 1 - 2 cos x) / (sin x . (1 - cos x))
= (2 - 2 cos x) / (sin x . (1 - cos x))
= 2 (1 - cos x) / (sin x . (1 - cos x))
= 2 / sin x
= 2 . cosec x
•Pertanyaan:
Sin x/(1-Cos x)+(1-Cos x)/Sin x
=2Cscx
-----------------------------------------------
-----------------------------------------------
•Pembahasan:
Agar bisa menjawab pertanyaan tentang Identitas Trigonometri kakak harus mengetahui hal dibawah ini :
•Sin² @+Cos² @=1
•1+Tan² @=Sec² @
•1+Cot² @=Csc² @
•Tan @=1/Cot @=Sin @/Cos @
•Cot @=1/Tan @=Cos @/Sin @
•Sin @=1/Csc @
•Cos @=1/Sec @
•Csc @=1/Sin @
•Sec @=1/Cos @
itulah yang harus kita ketahui agar bisa menjawab pertanyaan tentang Identitas Trigonometri...
----------------------------------------------
----------------------------------------------
•Penyelesaian:
Ingat ya bahwa :
Sin² @+Cos² @=1
Csc @=1/Sin @
[tex] \frac{sin \: x}{1 - cos \: x} + \frac{1 - cos \: x}{sin \: x} \\ = \frac{sin \: x.sin \: x + (1 - cos \: x)(1 - cos \: x)}{(1 - cos \: x).sin \: x} \\ = \frac{ {sin}^{2}x + 1 - cos \: x - cos \: x + {cos}^{2}x }{(1 - cos \: x).sin \: x} \\ = \frac{( {sin}^{2}x + {cos}^{2} x) + 1 - 2cos \: x }{(1 - cos \: x).sin \: x} \\ = \frac{1 + 1 - 2cos \: x}{(1 - cos \: x).sin \: x} \\ = \frac{2 - 2cos \: x}{(1 - cos \: x).sin \: x} \\ = \frac{2(1 - cos \: x)}{(1 - cos \: x).sin \: x} \\ = \frac{2}{sin \: x} \\ = 2 \times \frac{1}{sin \: x} \\ = 2csc \: x[/tex]
-----------------------------------------------
-----------------------------------------------
•DetilPertanyaan:
•Mapel:Matematika
•Kelas:10
•Bab:Trigonometri
•SubBab:Identitas Trigonometri
•Kode:10.2.7
8. cosx/1—sinx + cosx/1+sinx =
IDentitas Trigonometri
(a - b)(a + b) = a² - b²
sin² x + cos² x = 1
1/cos x = sec x
__
cos x / (1 - sin x) + cos x / (1 + sin x)
= cos x (1/ (1 - sin x) + 1/ (1 + sin x))
samakan penyebut jdi (1 - sin x)(1 + sin x)
= cos x ((1 + sin x) + (1 - sin x))/(1 - sin x)(1 + sin x)
= cos x × 2/(1 - sin² x)
= cos x × 2/cos² x
= 2/cos x
= 2 sec x
9. buktikan bahwa sinx/1-cosx=1+cosx/sinx
Jawab:
\frac{sin x}{1+cos x}= \frac{1-cosx }{sinx}
\frac{sin x}{1+cos x}= \frac{1-cosx }{sinx} . \frac{1+cosx}{1+cos x}
\frac{sin x}{1+cos x}= \frac{(1-cosx) (1+cosx)}{sinx(1+cosx)}
\frac{sin x}{1+cos x}= \frac{1-cos ^{2}x }{sinx(1+cosx)}
ingat rumus identitas
sin²x + cos²x = 1
sin²x = 1-cos²x
maka:
\frac{sin x}{1+cos x}= \frac{1-cos ^{2}x }{sinx(1+cosx)}= \frac{sin ^{2} x }{sinx(1+cosx)}= \frac{sin x . sinx }{sinx(1+cosx)} = \frac{sin x }{1+cosx}
TERBUKTI
#Jawaban terbaik plis
#Semoga membantu
10. Buktikan bahwa 1+sinx/cosx = cosx/1-sinx
Jawab:
1+sinx/cosx = cosx/1-sinx
Kiri:
1+sinx/cosx = (1+sinx)(1-sinx)/cosx
= 1-sinx^2/cosx
= cosx/cosx
= 1
Kanan:
cosx/1-sinx = (1-sinx)(1+sinx)/1-sinx
= 1-sinx^2/1-sinx
= 1
Kedua sisi sama, sehingga 1+sinx/cosx = cosx/1-sinx
Penjelasan dengan langkah-langkah:
11. sec x= sinx/cosx+cosx/1+sinx
sec x = [tex] \frac{sin x}{cos x} [/tex] + [tex] \frac{cos x}{1 + sin x} [/tex]
= [tex] \frac{sin x (1 + sin x) + cos^{2} x}{cos x (1 + sin x)} [/tex]
= [tex] \frac{sin x + sin^{2} x + cos^{2} x}{ cos x (1 + sin x)} [/tex]
= [tex] \frac{1 + sin x}{cos x (1 + sin x)} [/tex]
= 1/cos x
= sec x .....(terbukti)Melalui pembuktian identitas.
12. cosx/1+sinx + 1+sinx/cosx = -2secanx. buktikan!
Tidak Terbukti, mungkin mksut soal = 2secx. :)
13. 1/cosx sinx - cosx/sinx = tanx
1/ cos x sin x - cos x / sin x = 1 / cos x sin x - cos² x / cos x sin x
= (1 - cos²x) / cos x sin x = sin² x / cos x sin x = sin x / cos x
= tan x (terbukti)
14. (Sinx+cosx)2=1+2 sinx cosx
Sin^2 x + 2sinx.cosx +cos^2 x
Karena identitas triginometri
Sin^2 x +cos^2 x=1
Maka
Sin^2 x + 2sinx.cosx +cos^2
= 1 + 2sinx.cosx
15. Jika sinx * cosx=8/25 maka 1/sinx-1/cosx adalah
misal p = 1/sin x - 1/cos x
p = (cos x - sin x)/ (sin x cos x)
p² = ( 1 - 2 sin x cos x ) / ( sin x . cos x)²
p² = ( 1- 2( 8/25) ) / (8/25)²
p² = (9/25) / (8/25)²
p² = 9 (25) (25) / (25)(8)(8)
p² = (9. 25 )/(8.8)
p = √p² = (3)(5)/8 = 15/8
16. -sinx (sinx + cosx) - cosx (cosx - sinx) / cosx - sinx
Jawaban:
(cosx sinx 9 )
Penjelasan dengan langkah-langkah:
sinx+cosx
17. Buktikan bahwa 1-sinx/cosx = cosx/1+sinx
Trigonometri
Matematika XI
Pembuktian
[1 - sin x] / cos x = cos x / [1 + sin x]
Kalikan ruas kiri dengan [1 + sin x] / [1 + sin x]
{ [1 - sin x] / cos x } x { [1 + sin x] / [1 + sin x] } = cos x / [1 + sin x]
[1 - sin²x] / [cos x .(1 + sin x)] = cos x / [1 + sin x]
Ingat, sin²x + cos²x = 1 sehingga 1 - sin²x = cos²x
cos²x / [cos x .(1 + sin x)] = cos x / [1 + sin x]
cos x / [1 + sin x] = cos x / [1 + sin x]
Terbukti
18. Identitas trigonometri 1 sinx / cosx cosx /1 sinx
Jawaban:
cis g ⅔ + gis ¾ X hcis ⅞ = 221,012
Penjelasan dengan langkah-langkah:
cis g ⅔ + gis ¾ X hcis ⅞ = 221,012
19. (cosx + sinx) (cosx - sinx) = 1-2sin²x
(cosx + sinx) (cosx - sinx)
= cos x (cos x - sin x) + sin x (cos x - sin x)
= cos² x - cos x sin x + sin x cos x - sin² x
= cos² x - sin² x
= (1 - sin² x) - sin² x
= 1 - 2 sin² xIngat identitas trigonometri
[tex] \cos^{2} (x) + \sin^{2} (x) = 1 \\ \cos^{2} (x) = 1 - \sin^{2} (x) [/tex]
[tex] (\cos(x) + \sin(x) )( \cos(x) - \sin(x) ) \\ = { \cos^{2} (x) } - { \sin^{2} (x) } \\ = 1 - \sin^{2} (x) - \sin^{2} (x) \\ = 1 - 2 \sin^{2} (x) [/tex]
Semoga dapat dipahami
20. Bentuk tangen dari cosx/1+sinx + cosx/sinx-1
Gak jelas tanyaa. . .. . .
0 komentar