Navneet 11th Maths Part 1 Digest Pdf
April 21, 2022
•The........ Digest part of the food •Connect the back of the thoart at the...... •produce........ To digest food •Stores undigested food until it is passed out of the body throught the...
1. •The........ Digest part of the food •Connect the back of the thoart at the...... •produce........ To digest food •Stores undigested food until it is passed out of the body throught the...
Jawaban:
kucing goyang hot
Penjelasan:
sama sama kalau benar
2. Which part of the body uses mechanical and chemical methods to digest food? A. small instine B. Colon C. stomach
jawabannya a. small instine
maf ya klo slh
Jawaban:
A. Small instine
Penjelasan:
In the body, mechanical digestion is carried out through three processes, namely the chewing process in the mouth, stirring in the stomach, and segmentation in the small intestine.
3. Which part of the body uses mechanical and chemical methods to digest food? A. Colon B. Small instestine C. Stomach
Jawaban:
Bagian tubuh mana yang menggunakan metode mekanis dan kimiawi untuk mencerna makanan?
A. Colon B. Usus halus C. Lambung
C. Lambung / Stomach
sorry if wrong:)
4. jaundice 11th and Rainbow
Jawaban:
kakjajsjnBjnaiAjoakahhBiajjaoaoa
5. QUIZ MATHS Terlampir
Jawab:
[tex]\displaystyle \frac{1}{2}-\frac{1}{22!}[/tex]
Penjelasan dengan langkah-langkah:
Ubah ke bentuk notasi sigma :
[tex]\displaystyle \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{22}{20!+21!+22!}\\=\sum_{n=1}^{20}\frac{n+2}{n!+(n+1)!+(n+2)!}\\=\sum_{n=1}^{20}\frac{n+2}{n!+(n+1)(n)!+(n+2)(n+1)(n)!}\\=\sum_{n=1}^{20}\frac{n+2}{n!(1+(n+1)+(n+2)(n+1))}\\=\sum_{n=1}^{20}\frac{n+2}{n!((n+2)+(n+2)(n+1))}\\=\sum_{n=1}^{20}\frac{n+2}{n!(n+2)^2}\\=\sum_{n=1}^{20}\frac{1}{n!(n+2)}.....(kali\:dengan\:\frac{n+1}{n+1})[/tex]
[tex]\displaystyle =\sum_{n=1}^{20}\frac{n+1}{(n+2)!}\\=\sum_{n=1+2}^{20+2} \frac{n-2+1}{(n-2+2)!}\\=\sum_{n=3}^{22} \frac{n-1}{n!}\\=\sum_{n=3}^{22} \frac{n}{n!}-\frac{1}{n!}\\=\sum_{n=3}^{22} \frac{n}{n(n-1)!}-\frac{1}{n!}\\=\sum_{n=3}^{22} \frac{1}{(n-1)!}-\frac{1}{n!}\\=\frac{1}{(3-1)!}-\frac{1}{3!}+\frac{1}{(4-1)!}-\frac{1}{4!}+...+\frac{1}{(22-1)!}-\frac{1}{22!}\\=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{21!}-\frac{1}{22!}\\\\=\frac{1}{2}-\frac{1}{22!}[/tex]
diubah ke bentuk persamaan sigma
[tex]\displaystyle\sum_{n=3}^{22}\frac{n}{(n-2)!+(n-1)!+n!)\\ = \sum_{n=3}^{22} \frac{n}{(n-2)!(1+(n-1)+(n-1)n}[/tex]
[tex]\displaystyle = \sum_{n=3}^{22} \frac{n}{(n-2)!(n+n^2-n)}\\ = \sum_{n=3}^{22} \frac{n}{n^2(n-2)!)\\ =\sum_{n=3}^{22} \frac{1}{n(n-2)!}[/tex]
[tex]\displaystyle = \sum_{n=3}^{22}\frac{n-1}{n(n-1)(n-2)!}\\=\sum_{n=3}^{22}\frac{n-1}{n!}\\ = \sum_{n=3}^{22}\frac{n}{n!}-\frac{1}{n!}[/tex]
[tex]\displaystyle\sum_{n=3}^{22}\frac{1}{(n-1)!} - \frac{1}{n!}\\ = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \dots + \frac{1}{21!} - \frac{1}{22!}[/tex]
banyak yang saling menghilangkan menyisakan
[tex]\displaystyle \frac{1}{2!} + 0 + \dots + 0 - \frac{1}{22!}\\ \boxed{=\frac{1}{2}-\frac{1}{22!}}[/tex]
6. July 11th,1945 artinya
Jawaban:juli ke 11, 1945
Penjelasan:semoga membantu
Jawaban:
11 Juli 1945
atau
Sebelas Juli Sembilan Belas Empat puluh Lima
Penjelasan:
Di tanggal ini ada Sidang BPUPKI
Semoga membantu ^ v ^
100% Kata Asli
7. QUIZ MATHS Terlampir
Jawab:
2575
Penjelasan dengan langkah-langkah:
[tex]\displaystyle {U}_{1}=1\\{U}_{2}=1+2=3\\{U}_{3}=1+2+3=6\\...\\{U}_{r}=\frac{r}{2}(r+1)[/tex]
misalkan :
[tex]\displaystyle {x}_{1}=\frac{1}{\frac{1}{{U}_{1}}}=1\\ {x}_{2}=\frac{2}{\frac{1}{{U}_{1}}+\frac{1}{{U}_{2}}}=\frac{2}{1+\frac{1}{3}}=\frac{3}{2}\\{x}_{3}=\frac{3}{\frac{1}{{U}_{1}}+\frac{1}{{U}_{2}}+\frac{1}{{U}_{3}}}=\frac{3}{\frac{4}{3}+\frac{1}{6}}=2\\...\\{x}_{n}=1+\frac{1}{2}(n-1)\\maka,\:{x}_{100}=1+\frac{99}{2}=\frac{101}{2}[/tex]
Sehingga :
[tex]\displaystyle {x}_{1}+{x}_{2}+{x}_{3}+...+{x}_{100}=\frac{100}{2}\left({x}_{1}+{x}_{100}\right)=50\left(1+\frac{101}{2}\right)\\=50\left(\frac{103}{2}\right)=25\times103=2575[/tex]
Cara lainnya adalah menganalisa bentuk dari soalnya, apabila diubah ke notasi sigma menjadi:
[tex]\displaystyle {x}_{1}+{x}_{2}+{x}_{3}+...+{x}_{100}=\displaystyle \sum_{N=1}^{100}\frac{N}{S}\\dengan\:\\S=\sum_{k=1}^{N} \frac{1}{\displaystyle \sum_{j=1}^{k}j}[/tex]
jumlah bilangan asli berurutan 1+2+3+...+k adalah [tex]\displaystyle \frac{k}{2}(k+1)[/tex]
Maka :
[tex]\displaystyle \sum_{k=1}^{N} \frac{1}{\displaystyle \sum_{j=1}^{k}j}\\=\sum_{k=1}^{N} \frac{1}{\displaystyle \frac{k}{2}(k+1)}=\sum_{k=1}^{N} \frac{2}{\displaystyle k(k+1)}\\=2\sum_{k=1}^{N} \frac{1}{\displaystyle k(k+1)}\\=2\sum_{k=1}^{N} \left(\frac{1}{k}-\frac{1}{k+1}\right)........\:\:Deret\:Teleskopis\\=2\left(1-\frac{1}{N+1}\right)\\S=2\left(1-\frac{1}{N+1}\right)\\\\\\Jadi, Jumlah\:deret\:pada\:soal\:adalah\:=\displaystyle \sum_{N=1}^{100}\frac{N}{\displaystyle 2\left(1-\frac{1}{N+1}\right)}\\[/tex]
Sehingga :
[tex]\displaystyle \sum_{N=1}^{100}\frac{N}{\displaystyle 2\left(1-\frac{1}{N+1}\right)}\\= \frac{1}{2}\sum_{N=1}^{100}\frac{N}{\displaystyle\left(\frac{N}{N+1}\right)}\\=\frac{1}{2}\sum_{N=1}^{100} (N+1)\\=\frac{1}{2}\times\frac{100}{2}\times(2\times2+(100-1)\times1)\\=25(4+(100-1))\\=25(103)\\=2575[/tex]
8. Tuliskan hal yang kamu ketahui tentang Message-Digest Algortihm 4?
Jawaban:
Message-Digest algortihm 4(seri ke-4) yang dirancang oleh Profesor Ronald Rivest dari MIT pada tahun 1990. Panjangnya adalah 128 bit. MD4 juga digunakan untuk menghitung NT-hash ringkasan password pada Microsoft Windows NT, XP dan Vista. ... SHA adalah Secure Hash Algoritma.
Penjelasan:
maaf ya kalau salah
9. 1.dari kata kunci berikut yg menghasilkan pencarian file dgn jenis PDF adalah... a. filetype:PDF b. filetype=PDF c. filetype PDF d. foletype-PDF
c, file type pdf itu yang benar menurut sayasemua jawaban salah jawaban adalah filetype.PDF
jawaban c adalah yang paling benar sepertinya
10. Part 1Tolong jawab YGY masih part 1 ada lagi part 2 nyaa
Penjelasan dengan langkah-langkah:
(6x + 2) + (2x - 9)
8x - 7 (A)
12 × 4/3a
16a (A)
-5x + 10 + 3x - 9
-2x + 1 (A)
1). (6x + 2) + (2x - 9)
= (6x + 2x) + (-9 + 2)
= 8x + (-7)
= 8x-7
================
2). 12× 4/3a
= 48/3a
= 16a
================
3). -5x + 10 + 3x - 9
= (-5x + 3x) + (10 - 9)
= -2x+1
[tex]\bold{\mathbb{\color{ff0000}{♡} \color{ff4000}{♡}\color{ff8000}{♡}\color {ffc000}{♡}\color{ffff00}{♡}\color{c0ff00}{♡}\color {80ff00}{♡}\color{40ff00}{♡}\color {00ff00}{♡}\color{00ff40}{M}\color{00ff80}{a}\color {00ffc0}{s} \: \color{00ffff}{R}\color {00c0ff}{y}\color{0080ff}{a}\color{0040ff}{n}\color {0000ff}{♡}\color{4000ff}{♡}\color{8000ff}{♡}\color{c000ff}{♡}\color{ff00ff}{♡}\color {ff00c0}{♡}\color{ff00a0}{♡}\color{ff0080}{♡}\color{ff0040}{♡}}}[/tex]
11. MATHS PROBLEM Terlampir
Misal: [tex] \displaystyle f(x) = \sqrt{x^2+4}+\sqrt{x^2-24x+153}[/tex]
[tex]\displaystyle \min\{f(x)\} = \dots?[/tex]
Penyelesaian:Mencari turunan [tex] f(x) [/tex]
Turunan [tex]f(x)[/tex] bentuk [tex]f(x) = \sqrt{u}[/tex] adalah
[tex] \displaystyle \boxed{f'(x) = \frac{u'}{2\sqrt{u}}}[/tex]
sehingga
[tex] \displaystyle f(x) = \sqrt{x^2+4}+\sqrt{x^2-24x+153} \\ f'(x) = \frac{2x}{2\sqrt{x^2+4}}+\frac{2x-24}{2\sqrt{x^2-24x+153}} \\ f'(x) = \frac{x}{\sqrt{x^2+4}}+\frac{x-12}{2\sqrt{x^2-24x+153}} \\ f'(x) = \frac{x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4}}{\sqrt{\left(x^2+4\right)\left(x^2-24x+153\right)}} [/tex]
Cari titik stasioner [tex]f(x) \to f'(x) = 0 [/tex]
[tex] \displaystyle f'(x) = 0 \\ \frac{x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4}}{\sqrt{\left(x^2+4\right)\left(x^2-24x+153\right)}} = 0 [/tex]
Abaikan pembilang karena pembilang ≠ 0
[tex] \displaystyle x\sqrt{x^2-24x+153}+(x-12)\sqrt{x^2+4} = 0[/tex]
untuk mempersingkat, dimisalkan
[tex] \displaystyle a=x^2-24x+153 \\ b=x^2+4[/tex]
sehingga
[tex] \displaystyle \left(x\sqrt{a}+(x-12)\sqrt{b}\right)^2 = 0 \\ ax^2+2x(x-12)\sqrt{ab}+b(x-12)^2 = 0 \\ \left(ax^2+b(x-12)^2\right)^2 = \left(-2x(x-12)\sqrt{ab}\right)^2 \\ a^2x^4+2abx^2(x-12)^2+b^2(x-12)^4 = 4abx^2(x-12)^2 \\ a^2x^4-2abx^2(x-12)^2+b^2(x-12)^4 = 0 \\ \Big(ax^2-b(x-12)^2\Big)^2 = 0 \\ ax^2-b(x-12)^2 = 0 \\ ax^2-b(x^2-24x+144) = 0 \\ (a-b)x^2+24bx-144b = 0 \\ \Big(x^2-24x+153-x^2-4\Big)x^2+24x(x^2+4)-144(x^2+4) = 0 \\ (-24x+149)x^2+24x^3+96x-144x^2-576 = 0 \\ -24x^3+24x^3+149x^2-144x^2+96x-576 = 0 \\ 5x^2+96x-576 = 0 \\ (x+24)(5x-24) = 0 \\ \begin{array}{lcl}x+24=0&\text{atau}&5x-24=0 \\ x=-24&\text{atau}&x=\frac{24}{5} \\ \bold{(TM)}&{}&{} \end{array}[/tex]
Uji [tex]f'(x)[/tex] dan abaikan pembilang karena pembilang pasti selalu positif (syarat fungsi bentuk akar)
[tex] \displaystyle \begin{aligned} \{x<\frac{24}{5}\}&: x=0 \to (0)\sqrt{(0)^2-24(0)+153}+((0)-12)\sqrt{(0)^2+4} &= 0+(-) < 0 \\ \{x>\frac{24}{5}\}&: x=12 \to (12)\sqrt{(12)^2-24(12)+153}+((12)-12)\sqrt{(12)^2+4} &= (+)+0 > 0 \end{aligned}[/tex]
Dari uji titik [tex]f'(x)[/tex], ketika diilustrasikan akan seperti ini dalam bentuk garis bilangan:
[tex] \displaystyle \boxed{\:\:\:\text{turun (-)}\:\:\:}\frac{24}{5}\boxed{\:\:\:\text{naik (+)}\:\:\:}[/tex]
Dilihat dari garis bilangan [tex]f'(x)[/tex], nilai [tex]\min\{f(x)\}[/tex] didapat ketika [tex]x=\frac{24}{5}[/tex] sehingga nilai [tex]\min\{f(x)\}[/tex]
[tex] \displaystyle \begin{aligned}\min\{f(x)\} &= f\left(\frac{24}{5}\right) \\ &= \sqrt{\left(\frac{24}{5}\right)^2+4}+\sqrt{\left(\frac{24}{5}\right)^2-24\left(\frac{24}{5}\right)+153} \\ &= \sqrt{\frac{576+100}{25}}+\sqrt{\frac{24}{5}\left(\frac{24-120}{5}\right)+153} \\ &= \sqrt{\frac{676}{25}}+\sqrt{\frac{-2304+3825}{25}} \\ &= \frac{26}{5}+\sqrt{\frac{1521}{25}} \\ &= \frac{26}{5}+\frac{39}{5} \\ &= \frac{65}{5} \\ &= 13 \end{aligned}\\[/tex]
Jawaban:[tex] \displaystyle \boxed{\bold{\min\{f(x)\} = 13}}[/tex]
12. Maths Problem Terlampir
Jawab:
Penjelasan dengan langkah-langkah:
13. - The student ( Not Study) Maths+ The Student don't study Maths?
Jawaban:
Does the student study maths?
Penjelasan:
Semoga membantu ^•^
maaf klw salah
Jawaban:
(?) are the students study maths?
Penjelasan:
buat introgatif tobe nya didepan ya, gw bingung ini yg positif nya gada tobe
14. 11th Quiz ☆Terlampir -,
Jawaban:
Terlampir -,
by rai1194
Terlampiir caranya
83215. QUIZ MATHS Terlampir
Jawaban:
130
Penjelasan dengan langkah-langkah:
27x + 28y + 29z = 363
karena 27 28 dan 29 adalah angka yang berdekatan maka 363 : (27+28+29) = 4,32
karena positif integer maka kita ambil bulatnya aja yaitu 4. Maka coba kombinasi angka 4 dan sekitarnya hingga dapat kombinasi
27 . 5 + 28 . 4 + 29 . 4 = 363
x = 5
y = 4
z = 4
maka
10x (5 + 4 + 4) = 100 x 13 = 1.300
16. QUIZ MATHS Terlampir
Penjelasan dengan langkah-langkah:
x^2+y^2=6
(x+y)^2 - 2xy = 6
(x+y)^2 - 2(2+3akar2-(x+y))=6
(x+y)^2+2(x+y)-(10+6akar2)=0
rumus ABC
[tex]x + y = \frac{ - b + - \sqrt{ {b }^{2} - 4ac} }{2a } \\ = \frac{ - 2 + - \sqrt{4 + 40 + 24 \sqrt{2} }}{2} \\ = \frac{ - 2 + - \sqrt{44 + 2 \sqrt{288} } }{2} \\ = - 1 + - (3 + \sqrt{2) } \\ = 2 + \sqrt{2} \\ atau \\ = - 4 - \sqrt{2} [/tex]
lx+y+1l= 3+akar 2
17. Quiz "Kombinasi dari :• Maths
MathsM = 1a = 1t = 1h = 1s = 1------- +
C = 5! / 1! (5 - 1)!
= 5! / 1! (4)!
= 120 ÷ 24
= 5C
MathsC = n! / r! ( n - r )!
C = 5! / 1! ( 5 - 1 )!
C = 5! / 4!
C = 120 / 24
C = 518. apa perbedaan 'she teaches maths' dan 'she teaching maths'
Jawaban:
she teaches maths (Dia biasanya mengajar matematika)
She is teaching maths (Dia sedang mengajar matematika)
Jangan lupa di follow ya kak :)
Jawaban:
Kata tersebut memiliki perbedaan arti yaitu:
she teaches maths : Dia biasanya mengajar matematika
sementara → she teaching maths : Dia sedang belajar matematika.
Penjelasan:
.
.
Semoga Membantu~
19. 11th or 11st? ada yg bisa bantu?
Apabila 11 dijadikan tanggal, atau urutan. Maka, 11 menjadi 11th
PembahasanHal tersebut dinamakan angka ordinal. Angka ordinal adalah angka dimana disusun secara berurutan dan terdapat tambahan seperti "st, nd, rd, atau th"
Ordinal Number [1-10]1st => first. 6th => sixth
2nd => second. 7th => seventh
3rd => third. 8th => eighth
4th => fourth. 9th => ninth
5th => fifth. 10th => tenth
Dapat diketahui bahwa jika terdapat angka 1,2 atau 3 diakhir maka secara berurutan disebut first, second, third. Kecuali angka 11,12,13.
Apabila menemukan dua bilangan akhir 11,12,13 maka tetap menggunakan th dibelakang. Jadinya, eleventh dsb.
Detail JawabanMapel : Bahasa Inggris
Kelas : 3 SD
Materi : Ordinal Number
Kata Kunci : 11th
Kode Kategorisasi : 3.5
#TingkatkanPrestasimu
#OptiTimCompetition
20. QUIZ MATHS terlampir
Jawab:
1003
Penjelasan dengan langkah-langkah:
[tex]\displaystyle f(x) = \frac{{9}^{x}}{{9}^{x}+3}[/tex]
Perhatikan bahwa :
[tex]\displaystyle f(x) + f(1 - x) = \frac{{9}^{x}}{{9}^{x}+3}+\frac{{9}^{1-x}}{{9}^{1-x}+3}\\= \frac{{9}^{x}({9}^{1-x}+3)+{9}^{1-x}({9}^{x}+3)}{({9}^{x}+3)({9}^{1-x}+3)}\\\\= \frac{{9}^{x}({9}^{1-x})+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+3\times{9}^{1-x}+9}\\=\frac{9+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+3\times{9}^{1-x}+9}\\\\=\frac{9+3\times{9}^{x}+9+3\times{9}^{1-x}}{9+3\times{9}^{x}+9+3\times{9}^{1-x}}\\\\=1[/tex]
maka :
[tex]\displaystyle f\left(\frac{1}{2007}\right)+f\left(1-\frac{1}{2007}\right)\\\\=f\left(\frac{1}{2007}\right)+f\left(\frac{2006}{2007}\right) = 1\\=f\left(\frac{2}{2007}\right)+f\left(\frac{2005}{2007}\right) = 1\\=f\left(\frac{3}{2007}\right)+f\left(\frac{2004}{2007}\right) = 1\\\\...\\...\\=f\left(\frac{1003}{2007}\right)+f\left(\frac{1004}{2007}\right) = 1[/tex]
[tex]\displaystyle \\-----------------------------------\:\:+\\\\f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+f\left(\frac{3}{2007}\right)+f\left(\frac{4}{2007}\right)+...+f\left(\frac{2006}{2007}\right)=1\times1003\\\\=1003[/tex]
0 komentar