close

Find The 9th Term From The End

Februari 24, 2023


Find The 9th Term From The End

consider the sequence 3,6,9,12... A)find the general term of the sequence B)Find the 11th term of the sequence​

Daftar Isi

1. consider the sequence 3,6,9,12... A)find the general term of the sequence B)Find the 11th term of the sequence​


Jawaban:

3,6,9,12,...

A) +3 / multiplication 3

B) 3,6,9,12,15,18,21,24,27,30,(33) / 3 × 11 = 33

jawabanny ad 2 ya, yg paling sesuai aj.

semoga membantu:)


2. The 5th term is 18 and the 9th term is 30. What is the 16th term of the sequence? a. 47 b. 49 c. 51 d. 53


Jawaban:

c. 51

Penjelasan dengan langkah-langkah:

The n-th term of the sequence formula

Un = a + (n-1) b

Un = the n-th term of the sequence

a = the first term

b = the difference between terms (beda/selisih)

U5 = 18

a + 4b = 18 ...(1)

U9 = 30

a + 8b = 30 ...(2)

Eliminate (1) and (2)

a + 4b = 18

a + 8b = 30

_________ -

-4b = -12

b = 3

Substitute b = 3 to (1)

a + 4b = 18

a + 4(3) = 18

a + 12 = 18

a = 18 - 12

a = 6

Un = 6 + (n-1) 3

U16 = 6 + (16-1) 3

= 6 + (15)3

= 6 + 45

= 51

Answer: c.51

Hope this helps.


3. find the nth term of the sequence 3,8,15,24


Polanya itu ditambah terus sama bilangan ganjil
3(+5), 8(+7), 15(+9), 24
Jadi bilangan selanjutnya 24 + 11 = 35

4. Hence, find the 200th term sequence 10,14,18,22,26


Penjelasan dengan langkah-langkah:

10, 14, 18, 22, 26, ...

Un = a + (n - 1)b

a = 10

b = 14 - 10 = 4

U200 = 10 + (200 - 1) 4

U200 = 10 + (199)4

U200 = 10 + 796

U200 = 806

The 200th term sequence 10,14,18,22,26,... is 806.


5. the 1st term of arithmatic sequences is 6 and 5th term ia 18 find the value of the difergen of the arithmatic sequences​


Jawaban:

3

Penjelasan:

Un= a+(n-1)b

U1 = a = 6

U5= a+(n-1)b

18= 6+(5-1)b

18= 6+ 4b

18-6= 4b

12= 4b

b=3

so, the divergen of the arithmetic sequence is 3


6. Given the Tn of a sequence is Tn = 4n + 7. The 9th term of the sequence is .… *​


Jawaban:

Write the correct answer!

= T(9) = 4(9) + 7

= 36+7

= 43

*Sequence=urutan

So the 9th term of the sequence is 43

So the 9th term of the sequence is 43_______________________________

Detail Jawaban:

Mata Pelajaran: Bahasa Inggris

Kelas: VII (JHS)

Materi: Sequence

Kode: 2.1.1

Tanggal: 9-11-2020

//Semoga membantu.


7. the difference between the tenth term and the seventh term of an arithmetic sequence is -60.the twelfth term divided by the sixth term is 2.find the first term and the common difference.


U10-U7= -60
a= first term , d= common difference
a+9d - (a+6d) = -60
a+9d -a -6d =-60
3d= -60
d= -20

U12/U6 = 2
U12=2U6
a+11d=2(a+5d)
a+11d=2a+10d
d=a=-20

8. The first term of a geometric progression is 75 and the third term is 27. Find the possible values for the fourth term


Jawab:

terlampir

Penjelasan dengan langkah-langkah:


9. When doe thi term end or when will thi term end the correct one for preent continou for future.


Jawaban:

Kapan masa jabatan ini berakhir atau kapan masa jabatan ini akan berakhir yang benar untuk saat ini berlanjut untuk masa depan.

Penjelasan:

kak itu artinya apa gimana kak aku g paham

semoga membantu


10. the first term of an arithmetic progression is 3, the fourth term is 15 and the 16th term is 63, find the common difference of this progression.​


Jawab:

b = difference = 4

Penjelasan dengan langkah-langkah:

U1 = 3, U4 = 15, U16 = 63

U1 = a = 3

U4 = a + 3b

15 = 3 + 3b

3b = 15 - 3 = 12

b = 12/3 = 4


11. consider this sequence 3,6,12,24,48,find in the term of. ,the formula of the nth term of this sequence​


Jawaban:

the formula was 3.2^n

while n is respective number from 0 to unlimited. but its a round number, not partial one


12. the first term is 3 and the fourth is 9. find 11th term.


Jawaban:

suku pertama adalah 3 dan suku keempat 9. temukan suku kesebelas.

Un = a + (n-1)b

ket :

Un = suku ke-n

a = suku pertama

b = beda

     b = U_{n} - U_{n-1}b=Un−Un−1

n = banyaknya suku

Unnya 8


13. Find the sum of arithmetic series where the last term is 41, the girst term is 3 and the differences is 2


Un = 41

a = 3

b = 2

Un = 3 + (n - 1) 2 = 41

3 + 2n - 2 = 41

2n + 1 = 41

2n = 40

n = 20

S20 = 20/2 (6 + 19(2)

S20 = 10 ( 6 + 38) = 440

14. The first term of an arithmetic sequence is 14. The fourth term is 32. Find the common difference.


Answer:

The n-th term of an arithmetic sequence is given by:

Un = a + (n - 1)b

Where a the first term, b the common difference. If U4 = 32 and a = 14 then

32 = 14 + (4 - 1)b

18 = 3b

b = 6

The common difference is 6


15. tolong dong apa arti dari kalimat in1.find the difference between the coefficient of the second term and of the fourth term in the expanded form of the following expression2.find the expanded form of the following algebraic expression


1. Temukan perbedaan antara koefisien istilah kedua dan istilah keempat dalam bentuk ekspres dari ekspresi berikut
2. Temukan bentuk meluas dari ekspresi aljabar berikut
Semoga membantu :) Ans:
1. Temukan perbedaan antara koefisien elemen kedua dan elemen keempat dalam bentuk yang diperluas dari ekspresi berikut.
2. Temukan bentuk yang diperluas dari ekspresi aljabar berikut.

16. The 6th term is 486 and the 3rd term is 18. Find the common ratio and the S6. a=2


[tex]\bf If :\\u6=ar^5=486\\u3=ar^2=18\\a=2\\\\ \blacklozenge\ Then,what\ is\ the\ common\ ratio\ and\ the\ sum\ of\ 6^{th}\ terms?\\\\ Problem\ Solving:\ \\ \frac{ar^5}{ar^2}= \frac{486}{18}\\r^3=27\\r= \sqrt[3]{27}\\r=3\\\\Now,the\ value\ for\ 'S6':\\ Sn=a \frac{(r^n-1)}{(r-1)}\\\\S6=2 \frac{(3^6-1)}{(3-1)}\\\\S6=2 \frac{(728)}{(2)}\\\\S6=2(364)\\\\S6=728\\\\\\ \bigstar \therefore Problem\ Solved\therefore\bigstar [/tex]

17. 1. Consider the sequence 4,11,18,25,32, .a) Find, in terms of n, a formula for the nthterm of the sequenceb) Hence, find the 93rd termc) The nth term of the sequence is 158, find the value of n​


Jawaban:

a) 7n - 3

b) the 93rd term = 648

c) the value of n = 23, (or the 23rd term)

Penjelasan dengan langkah-langkah:

the way to find answers are attached


18. When does this term end or when will this term end the correct one for present continous for future


Jawaban:

Kapan istilah ini berakhir atau kapan istilah ini akan berakhir yang benar untuk saat ini terus menerus untuk masa depan


19. The third term of a geometric progression is -108 and the sixth term is 32. Find (a) the common ratio and first term. [6 marks] (b) [2 marks] the sum of the first 20th term.


Jawab:

(a) Common ratio, r = $\frac{32}{-108} = -\frac{1}{3}$

First term, a = -108

(b) Sum of the first 20 terms, S$_{20}$ = $\frac{a\left(1-r^{20}\right)}{1-r}$

= $\frac{-108\left(1-(-\frac{1}{3})^{20}\right)}{1-(-\frac{1}{3})}$

= $\frac{-108\left(1-\frac{1}{3^{20}}\right)}{\frac{4}{3}}$

= $\frac{-432\left(1-\frac{1}{3^{20}}\right)}{4}$

= $-108\left(3^{19}-1\right)$

= $-108\left(3^{19}\right) + 108$

= $-3245056 + 108$

= -3244948


20. If (m+ 1), (2m - 7), and (m + 7) are the 1st,2nd, and 3nd terms of an Arithmetic Sequeace, respectively A. Find m B. Find the formula for finding the nth term. C. Find the 7th term D. Find the sum of the first 10 terms


Jawaban:

C

Penjelasan dengan langkah-langkah:

ngak tau (づ。◕‿‿◕。)づ(o´・_・)っ

Jawaban:

C. Find the 7th term

Penjelasan dengan langkah-langkah:

Maaf Kalau salah...

jadikan jawaban terbaik...

jangan lupa follow yaa..


Video Update


You Might Also Like

0 komentar